Exercise 68

(a) A tank contains 5000 L of pure water. Brine that contains 30 g of salt per liter of water is pumped into the tank at a rate of $25 \mathrm{~L} / \mathrm{min}$. Show that the concentration of salt after t minutes (in grams per liter) is

$$
C(t)=\frac{30 t}{200+t}
$$

(b) What happens to the concentration as $t \rightarrow \infty$?

Solution

The concentration of salt at time t is the ratio of mass m to volume V at time t.

$$
C(t)=\frac{m(t)}{V(t)}
$$

The volume is 5000 L initially and increases by 25 L per minute.

$$
V(t)=5000+25 t
$$

Apply the law of conservation of mass to determine $m(t)$.

$$
\begin{aligned}
{\left[\begin{array}{c}
\text { rate that salt } \\
\text { accumulates in tank }
\end{array}\right] } & =[\text { rate of salt in }]-[\text { rate of salt out }] \\
& =[\text { concentration in }] \times[\text { volumetric flow in }]-0 \\
& =\left(30 \frac{\mathrm{~g}}{\mathrm{~L}}\right)\left(25 \frac{\mathrm{~L}}{\mathrm{~min}}\right) \\
& =750 \frac{\mathrm{~g}}{\mathrm{~min}}
\end{aligned}
$$

The mass of salt initially is zero because the water is pure, so

$$
m(t)=0+750 t=750 t .
$$

Consequently, the concentration at time t in grams per liter is

$$
\begin{aligned}
C(t)=\frac{m(t)}{V(t)} & =\frac{750 t}{5000+25 t} \\
& =\frac{750 t}{5000+25 t} \cdot \frac{\frac{1}{25}}{\frac{1}{25}} \\
& =\frac{30 t}{200+t} .
\end{aligned}
$$

In the limit as $t \rightarrow \infty$, the concentration becomes

$$
\lim _{t \rightarrow \infty} C(t)=\lim _{t \rightarrow \infty} \frac{30 t}{200+t}=\lim _{t \rightarrow \infty} \frac{30}{\frac{200}{t}+1}=\frac{30}{0+1}=30 \frac{\mathrm{~g}}{\mathrm{~L}}
$$

